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2021	Russell	Sage	Foundation	Summer	Institute	in	Social-Science	Genomics	

	

Problem	Set	4	

	

This	problem	set	focuses	on	polygenic	scores,	gene-environment	interaction,	and	

Mendelian	randomization.		It	is	due	at	9:30am	on	Wednesday,	August	18.	

	

1.			Interpreting	gene-environment	interaction	regressions	when	genetic	and	

environmental	factors	are	correlated	

	

Suppose	we	wish	to	estimate	the	model	

	

𝑦! = 𝛽" + 𝛽#𝑒! + 𝛽$𝑥! + 𝛽%𝑒! × 𝑥! + 𝜖! ,	 (1)	

	

where	𝑥! 	is	individual	i’s	genotype,	𝑒! 	is	individuals	i’s	environment	(as	measured	by	a	

specific	environmental	variable),	and	where	we	ignore	control	variables	for	simplicity.	We	

would	like	to	test	Ho:	β3	=	0	vs.	H1:	β3	≠	0.	

	

There	are	several	scenarios	where	we	can	observe	a	non-zero	correlation	between	𝑥! 	and	

ei:		Cov(𝑥! , 𝑒!) ≠ 0.		
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1) We	might	want	to	study	how	a	genetic	variant’s	effect	on	years	of	schooling	(𝑦!)	is	

modified	by	cognitive	ability	(𝑒!)	–	this	is	called	the	“moderating	effect”	of	cognitive	

ability	on	educational	attainment.		

	
2) We	might	want	to	study	how	the	genetic	variant	also	influences	years	of	schooling	

(𝑦!)	via	its	effect	on	cognitive	ability	(𝑒!)	–	this	is	called	the	“mediating	effect”.		
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3) We	might	want	to	study	how	a	genetic	variant’s	effect	on	skin	pigmentation	(𝑦!)	is	

modified	by	a	daily	sunlight	exposure	(𝑒!),	but	both	the	allele	frequencies	and	daily	

sunlight	exposure	are	correlated	with	ancestry.		

	
a.	 Now	suppose	that	we	estimate	Equation	1	and	find	that	β3	is	significantly	different	from	

0.	Can	we	then	conclude	there	are	gene-environment	interactions?	(Hint:	You	can	define	

𝑒! = 𝜃𝑥! + 𝜀! 	because	Cov(𝑥! , 𝑒!) ≠ 0.)	

	

b.	 	Suppose	𝑥! 	and	𝑒! 	are	not	correlated,	and	we	estimate	Equation	1	and	find	that	β3	is	

significantly	different	from	0.	Can	we	then	conclude	that	there	is	a	gene-environment	

interaction?	(Hint:	While	Cov(𝑥! , 𝑒!) = 0,	the	genotype	at	a	different	locus	(𝑥!,$)	might	be	

correlated	with	𝑒! .	In	this	case,	we	could	write	𝑒! = 𝜃𝑥!,$ + 𝜀! .)	

	

Thus,	one	must	establish	that	an	interaction	is	really	driven	by	the	environmental	

component	(not	the	genetic	component)	of	the	𝑒! 	variable.	This	is	why,	when	possible,	it	is	

desirable	to	use	random	variation	in	the	environmental	variable	from	either	an	actual	

randomization	or	a	natural	experiment.		

	

c.	 Many	gene-environment	interaction	studies	test	whether	family	environment	interacts	

with	a	genetic	variant	of	interest.	For	instance,	in	their	study	of	aggressive	behavior,	

Caspi	et	al.	(2002)	examine	if	the	MAOA	gene	interacts	with	childhood	maltreatment.	
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They	find	a	significant	interaction.	Are	they	right	to	conclude	that	their	data	suggest	

there	is	a	gene-environment	interaction?	What	is	an	alternative	explanation?	

	

(Hint	(to	help	you	think	of	one	possible	alternative	explanation):	What	if	the	childhood	

maltreatment	variable	is	genetically	correlated	with	aggressiveness,	and	the	childhood	

maltreatment	variable	and	aggressiveness	are	heritable?)	
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2.			Mendelian	randomization,	the	exclusion	restriction,	and	MR-Egger	regression	

	

Suppose	we	want	to	estimate	the	causal	effect	of	an	environmental	variable	𝑒	on	some	

outcome	𝑦.	Suppose	the	true	causal	model	is:	

	

𝑦 = 𝑒𝛽 + 𝜖,	 (2)	

	

𝑒 = 𝑥'𝛾' + 𝜁' ,	 (3)	

	

where	𝛽	is	the	causal	effect	that	we	want	to	estimate,	𝑥' 	is	the	genotype	of	genetic	variant	

𝑗 ∈ {1,2, … , 𝐽}	that	has	causal	effect	𝛾' 	on	𝑒	and	that	is	available	in	our	data,	and	𝜖	and	𝜁' 	are	

residuals.	To	conserve	notation,	we	define	𝑦,	𝑒,	and	𝑥' 	as	de-meaned	variables,	and	we	omit	

the	i	subscript	(that	would	index	individuals)	from	𝑦,	𝑒,	𝜖,	𝑥' ,	and	𝜁' .	We	code	the	alleles	for	

each	genetic	variant	such	that	𝛾' > 0	for	all	𝑗.	We	assume	that	𝜖	and	every	𝑥' 	are	

independent	of	every	𝜁' ,	and	we	assume	that	all	the	𝑥' ’s	are	independent	of	each	other.	We	

denote	our	sample	size	of	individuals	by	𝑁,	which	we	will	assume	is	a	large	number.	

	

The	problem	we	face	is	that	𝑒	is	not	exogenous:	Cov(𝑒, 𝜖) ≠ 0.	As	a	result,	simply	estimating	

regression	Equation	2	in	our	data	would	give	a	biased	estimate	of	the	true	causal	effect	𝛽.	

The	idea	of	Mendelian	randomization,	often	abbreviated	MR,	is	to	exploit	the	fact	that	we	

have	data	on	genetic	variants	(the	𝑥' ’s)	that	we	know	affect	𝑒—as	described	in	Equation	

3—in	order	to	get	a	consistent	estimate	of	𝛽.	Specifically,	the	idea	is	that	if	we	can	treat	the	

𝑥' ’s	as	randomly	assigned	independent	of	𝜖,	then	the	changes	in	𝑒	that	are	caused	by	

different	values	of	the	𝑥' ’s	are	exogenous,	and	we	can	restrict	our	attention	to	the	effect	on	

𝑦	of	those	differences	in	𝑒	that	are	caused	by	differences	in	the	𝑥' ’s.	In	essence,	we	treat	the	

𝑥' ’s	as	a	natural	experiment	that	gives	us	random	variation	in	𝑒,	and	then	we	use	that	

random	variation	to	estimate	the	causal	effect	of	𝑒	on	𝑦.	We	will	refer	to	the	𝑥' ’s	as	

instrumental	variables,	or	instruments	(because	they	are	not	our	direct	objects	of	interest	

but	are	used	only	instrumentally	to	help	us	estimate	the	causal	effect	of	𝑒	on	𝑦).	
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(MR	is	a	specific	application	of	instrumental	variables	estimation	where	the	instruments	are	

a	set	of	one	or	more	genetic	variants.	The	term	“Mendelian	randomization”	comes	from	

Mendel’s	law	of	segregation,	which	states	that	one	allele	from	each	parent	is	inherited	at	

random.	If	we	conduct	a	MR	study	with	sibling	data	and	include	family	fixed	effects	in	

Equation	3,	then	we	reproduce	exactly	this	Mendelian	experiment	(for	an	example,	see	

Fletcher	and	Lehrer	(2011)).	In	the	more	usual	case,	we	do	not	have	family	data,	and	then	

the	usual	concerns	about	population	stratification	apply	and	need	to	be	addressed.	Even	if	

we	can	exploit	randomization	within	a	family,	however,	MR	still	relies	on	the	assumption	of	

the	exclusion	restriction,	discussed	next.)	

	

The	key	assumption	underlying	MR	is	called	the	exclusion	restriction:	

	

CovA𝑥' , 𝜖B = 0.	 (4)	

	

This	assumption	states	that	the	genetic	variants	do	not	affect	the	outcome	𝑦	through	any	

channel	other	than	the	environmental	factor	𝑒.	(It	is	called	the	exclusion	restriction	

because	we	are	“excluding”	any	other	channels.)	If	the	exclusion	restriction	fails,	then	we	

cannot	use	the	random	variation	from	the	𝑥' ’s	to	isolate	the	causal	effect	of	𝑒	on	𝑦	because	

the	variation	in	the	𝑥' ’s	also	affects	𝑦	for	other	reasons.	

	

(In	practical	applications	of	MR,	the	other	key	assumption	is	that	the	“instrument	is	strong,”	

meaning	that	the	𝑥' ’s	are	sufficiently	predictive	of	𝑒	(where	“sufficiently	predictive”	

depends	on	the	sample	size).	Throughout	this	problem,	we	assume	that	the	analysis	is	

conducted	in	a	sufficiently	large	sample	of	individuals	that	this	source	of	bias	is	negligible.)	

	

MR	estimation	involves	a	two-stage	approach	called	two-stage	least	squares,	or	2SLS.	We	

will	consider	it	in	the	simplest	case	of	just	a	single	instrument	(𝐽 = 1),	denoted	𝑥.	
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In	the	first	stage,	you	estimate	𝛾C	by	running	the	regression	of	𝑒	on	𝑥	from	Equation	3.	You	

then	create	the	predicted	value	of	𝑒	from	that	regression,	𝑒̂ = 𝑥𝛾C;	this	predicted	value	

isolates	the	component	of	the	variation	in	𝑒	that	is	due	to	𝑥.	In	the	second	stage,	you	run	a	

regression	of	𝑦	on	𝑒̂.	The	slope	coefficient	from	this	regression	is	the	2SLS	estimator:	

𝛽E2SLS
(→*
F⎯⎯H +,-(/̂,1)

345(/̂)
.	

	

a.	 Show	that	under	the	exclusion	restriction,	𝛽E2SLS	is	a	consistent	estimate	of	𝛽.	(Hint:	

Substitute	𝑒̂ = 𝑥𝛾C	into	the	limit	of	the	2SLS	estimator,	and	use	the	fact	that	

𝛾C
(→*
F⎯⎯H +,-(/,6)

345(6)
.)	

	

Unfortunately,	it	is	impossible	to	directly	test	the	exclusion	restriction	using	the	data	at	

hand.	MR	studies	are	most	persuasive	when	we	have	detailed	knowledge	of	the	biology	that	

underlies	the	effects	of	the	genetic	variants—detailed	enough	that	we	can	be	confident	not	

only	about	what	the	relevant	genes	do	but	also	what	they	do	not	do.	Skeptics	about	MR	

argue	that	pleiotropy—that	is,	multiple	phenotypic	effects	from	a	given	gene—is	rampant,	

and	that	our	state	of	knowledge	is	currently	inadequate	to	rule	out	violations	of	the	

exclusion	restriction.	Moreover,	even	if	the	genetic	variants	we	use	as	instruments	satisfy	

the	exclusion	restriction,	they	could	be	in	LD	with	other	variants	that	violate	it.	For	

examples	of	the	debate	and	discussion,	see	Cawley,	Han,	and	Norton	(2011)	and	Taylor	et	

al.	(2015).	

	

In	the	context	of	instrumental	variables	estimation	(not	MR	specifically),	Kolesár	et	al.	

(2011)	recently	showed	that	if	we	have	access	to	multiple	instruments	(𝐽 > 1),	then	we	can	

weaken	the	exclusion	restriction	and	still	obtain	consistent	estimates	of	the	causal	effect	of	

𝑒	on	𝑦.	To	understand	the	weaker	assumption	that	is	needed,	we	will	first	define	

	

𝛼' ≡	
CovA𝑥' , 𝜖B
VarA𝑥'B

.	 (5)	
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𝛼' 	is	the	coefficient	you	would	get	from	regressing	𝜖	(the	determinants	of	𝑦	other	than	𝑒)	

on	𝑥' .	In	other	words,	it	is	the	effect	of	𝑥' 	on	𝜖.	It	is	a	measure	of	the	extent	to	which	the	

exclusion	restriction	is	violated	for	instrument	𝑗.	If	the	exclusion	restriction	holds	for	

instrument	𝑗,	then	𝛼' = 0.	

	

The	assumption	is	that	𝛼' 	(the	effect	of	𝑥' 	on	𝜖)	is	uncorrelated	with	𝛾' 	(the	effect	of	𝑥' 	on	

𝑒):	

	

CovA𝛼' , 𝛾'B = 0.	 (6)	

	

In	other	words,	the	assumption	states	that	across	the	𝐽	genetic	variants,	the	effect	of	a	

genetic	variant’s	effect	on	𝜖	is	uncorrelated	with	its	effect	on	𝑒.	Bowden	et	al.	(2015)	named	

this	assumption	InSIDE	(which	stands	for	Instrument	Strength	Independent	of	Direct	

Effect)	and	explored	it	in	the	context	of	MR.	The	remainder	of	this	problem	largely	mirrors	

Bowden	et	al.’s	analysis.	

	

b.	 Show	that	InSIDE	is	a	weaker	assumption	than	the	exclusion;	that	is,	if	the	exclusion	

restriction	holds,	then	the	InSIDE	assumption	holds,	but	the	converse	is	not	necessarily	

true.	

	

We	will	now	examine	how	a	consistent	estimate	of	𝛽	can	be	obtained,	assuming	that	the	

InSIDE	assumption	holds.	The	approach	is	a	two-stage	procedure.	In	the	first	stage,	we	run	

two	sets	of	regressions:	

	

1. For	each	genetic	variant	(i.e.,	instrument)	𝑥' ,	we	estimate	regression	Equation	3,	the	

regression	of	𝑒	on	𝑥' .	(This	is	also	the	“first-stage”	regression	of	the	standard	MR	

estimation	procedure.)	From	these	regressions,	we	obtain	a	set	of	coefficient	

estimates,	𝛾C#, 𝛾C$, … , 𝛾C7.	
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2. For	each	genetic	variant	𝑥' ,	we	estimate	the	following	regression	of	the	phenotype	

on	𝑥':	

	

𝑦 = 𝑥'Γ' +𝑤' ,	

	

where	Γ' 	is	the	coefficient	we	are	estimating,	and	𝑤' 	is	the	residual.	(In	the	language	

of	instrumental	variables	estimation,	this	regression	is	called	the	“reduced-form.”	It	

is	the	regression	you	would	get	if	you	started	with	the	two	regression	Equations	2	

and	3,	and	then	you	“reduced”	the	two	equations	to	a	single	equation	by	substituting	

Equation	3	into	the	value	of	𝑒	in	Equation	2.)	From	these	regressions,	we	obtain	a	

set	of	coefficient	estimates,	Γ#P , Γ$P ,… , Γ7P .	

	

c.	 Show	that	in	a	large	sample	of	individuals,	each	of	the	estimated	coefficients,	ΓQ' ,	will	

converge	to	

	

Γ8P
(→*
F⎯⎯H𝛾'𝛽 + 𝛼' .		 	 (Equation	7)	

	

(Hint:	Recall	that	in	a	large	sample	of	individuals,	the	OLS	coefficient	from	a	regression	

of	𝑦	on	𝑥' 	converges	to	
+,-96!,1:
34596!:

.	Substitute	Equation	2	for	𝑦	into	this	expression	and	

simplify.)	

	

In	the	second	stage,	we	consider	our	dataset	to	be	the	set	of	estimates,	RΓQ' , 𝛾C'S';#,$,…,7,		from	

the	first	stage,	and	we	regress	ΓQ'on	𝛾C':	

	

ΓQ' = 𝛽"= + 𝛽=𝛾C' + 𝜉' 	

	

This	regression	is	called	the	MR-Egger	regression.	(The	“MR”	is	for	“Mendelian	

randomization,”	and	the	“Egger”	pays	homage	to	the	closely	analogous	idea	of	Egger	

regression	that	is	commonly	used	in	meta-analysis	research.	For	the	coefficients	in	the	
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regression,	the	subscript	“E”	stands	for	“Egger.”)	From	this	regression,	we’re	interested	in	

both	the	estimated	intercept,	𝛽E"= ,	and	the	estimated	slope,	𝛽E= .	

	

d.	 Show	that	under	the	InSIDE	assumption,	𝛽E= 	is	a	consistent	estimator	of	𝛽.	(Hint:	Start	

with	the	fact	that	𝛽E=
7→*
F⎯H +,-(>?!,@A!)

345(@A!)
.	Substitute	for	ΓQ' 	using	Equation	7,	use	the	fact	that	

𝛾C'
(→*
F⎯⎯H𝛾' ,	and	simplify.)	

	

	(Note:	If	the	exclusion	restriction	holds,	then	MR	estimation	using	all	the	available	

instruments	has	two	advantages	over	MR-Egger	regression:	(1)	consistency	of	𝛽E= 	requires	

both	𝑁 → ∞	and	𝐽 → ∞,	whereas	𝛽E2SLS	relies	on	only	𝑁 → ∞;	and	(2)	MR	estimation	has	

greater	statistical	power.	One	advantage	of	MR-Egger	regression	is	that	individual-level	

data	is	not	required.)	

	

Bowden	et	al.	analyze	(and	conduct	simulations	to	assess)	the	performance	of	the	𝛽E= 	

estimator	in	four	pleiotropy	scenarios:	

	

1. No	pleiotropy:	𝛼' = 0	for	all	j.	

2. “Balanced	pleiotropy,	InSIDE	assumption	satisfied”:	𝛼' ≠ 0	for	all	𝑗,	but	

CovA𝛾' , 𝛼'B = 0.	

3. “Directional	pleiotropy,	InSIDE	assumption	satisfied”:	𝛼' > 0	for	all	j,	but	

CovA𝛾' , 𝛼'B = 0.	

4. “Directional	pleiotropy,	InSIDE	assumption	not	satisfied”:	𝛼' > 0	for	all	j,	and	

CovA𝛾' , 𝛼'B ≠ 0.	

	

e.	 Explain	why	the	standard	MR	estimator	𝛽E2SLS	yields	a	consistent	estimate	of	𝛽	only	in	

scenario	1,	whereas	the	MR-Egger	estimator	𝛽E= 	yields	a	consistent	estimate	of	𝛽	in	

scenarios	1-3	but	not	4.	(Hint:	These	results	follow	directly	from	what	you	showed	in	

previous	parts	of	the	problem.)	
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f.	 Bowden	et	al.	show	that	the	intercept	estimate	from	the	MR-Egger	regression,	𝛽E"= ,	can	

be	used	to	assess	whether	or	not	there	is	pleiotropy	that	is	“directional”	on	average.	

Show	that,	in	a	large	sample,	𝛽E"= 	is	a	consistent	estimator	of	the	average	“directionality”	

of	pleiotropy:	𝛽E"=
(→*,7→*
F⎯⎯⎯⎯⎯⎯HEA𝛼'B.	(Hint:	Use	the	fact	that	the	MR-Egger	regression	

equation	converges	to	Equation	7	for	every	𝑗	as	N	gets	large.	Also,	note	that	in	OLS,	

𝛽E"= = EPXΓQ'Y − 𝛽E=EPX𝛾C'Y.)	

	

Just	as	the	exclusion	restriction	from	standard	MR	cannot	be	tested	using	the	data	at	hand	

and	must	be	assessed	with	respect	to	external	knowledge	about	what	the	genetic	variants	

do	and	do	not	do,	the	InSIDE	assumption	similarly	cannot	be	tested	using	the	data	at	hand.	

	

g.	 Explain why	learning	whether	or	not	the	pleiotropy	is	directional	does	not	help	

determine	whether	the	InSIDE	assumption	is	satisfied.	

	

h.		 When	we	know	that	the	relationship	between	some	𝑥' 	and	𝑒	is	larger,	we	may	believe	

that	this	genetic	variant	is	more	important	biologically	in	general	and	may	have	a	larger	

influence	on	a	number	of	phenotypes.	Explain	why	in	that	case	we	might	worry	that	the	

InSIDE	assumption	could	be	violated,	even	if	the	pleiotropy	is	balanced	(EA𝛼'B = 0).	

	

i.	 Note	that	in	implementing	MR-Egger	regression	analyses,	we	may	choose	to	include	a	

small	number	of	genetic	variants	that	are	the	most	strongly	associated	with	𝑒,	or	a	

larger	number	of	genetic	variants,	some	of	which	may	not	be	strongly	associated	with	𝑒.	

Given	the	relationship	between	the	number	of	instruments	and	power	(described	in	

part	(d))	and	the	potential	bias	of	weak	instruments	(described	in	the	paragraph	before	

part	(a)),	what	are	the	tradeoffs	that	one	should	consider	in	choosing	between	these	

options?	If	we	only	have	detailed	biological	knowledge	about	a	limited	number	of	

genetic	variants,	how	does	that	affect	the	tradeoff?		
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3.			Genomic	Structural	Equation	Modeling	(Genomic	SEM)	

[problem	written	by	Elliot	Tucker-Drob]	

	

The	purpose	of	this	problem	set	question	is	to	work	through	a	toy	example	to	think	

through	how	SEM	is	used	to	approximate	covariance	matrices.	Typically,	you	as	the	user	

will	estimate	the	models	from	the	data.	However,	here,	you	are	provided	with	the	observed	

matrices	and	core	model	parameters.	You	do	not	need	to	estimate	the	models	yourself.	(For	

worked	examples	that	allow	you	to	practice	estimating	models	in	genomic	SEM	using	real	

GWAS	summary	data,	see	the	Genomic	SEM	wiki:	

https://github.com/GenomicSEM/GenomicSEM/wiki).	

	

The	following	is	a	genetic	correlation	matrix	P	for	phenotypes	p1	through	p4:	

	

1	

.6		1	

.5		.4		1	

.4		.3		.2		1	

	

The	following	are	the	heritabilities	(h2)	for	p1	through	p4:	

	

.2		

.3		

.1		

.4	

	

a.			Calculate	the	genetic	covariance	between	p1	and	p2.	Alternatively,	read	P	and	the	h2’s	

into	the	R	environment	and	compute	the	genetic	covariance	matrix	(S).	

	

b.				If	you	were	to	fit	a	single	common	factor	model	to	the	above	data,	you	would	obtain	the	

following	standardized	factor	loadings	(rounded,	𝚪)	for	p1	through	p4:	
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.9	

.7	

.6	

.4	

	

c.				Calculate	the	R2	in	p1	through	p4,	as	implied	by	the	factor	model,	either	by	hand	using	

path	tracing	rules,	or	via	matrix	algebra	(by	hand	or	in	R).	

	

d.			Calculate	the	standardized	residual	variance	of	p1	through	p4	from	this	model	(note	that	

R2	+	residual	variance	=	1.0).		

	

e.			Draw	the	complete	standardized	path	diagram	for	the	factor	model,	remembering	to	

include	residuals	and	variances.	Provide	the	parameter	estimates	for	all	paths.	

	

f.				Compute	the	genetic	correlation	matrix	for	p1	through	p4,	as	implied	by	the	above	model	

either	by	hand	using	path	tracing	rules,	or	via	matrix	algebra	(by	hand	or	in	R).	

	

g.			Compute	the	residual	matrix	(i.e.,	the	observed	matrix	minus	the	implied	matrix).	Does	

the	model	fit	the	observed	data	well?	

	

h.			Below	is	the	vector	of	genetic	correlations	between	an	external	phenotype	(z1)	and	p1	

through	p4.	Is	it	plausible	that	z1	is	associated	with	p1	through	p4	via	its	effects	on	the	

common	factor	F?	Explain.	

	

.19	

.14	

.13	

.09	
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i.			Below	is	the	vector	of	genetic	correlations	between	a	different	external	phenotype	(z2)	

and	p1	through	p4.	Is	it	plausible	that	z2	is	associated	with	p1	through	p4	via	its	effects	on	

the	common	factor	F?	Explain.	

	

.27	

.21	

.18	

.32	
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Computational	Problem	

	

4. Constructing	Polygenic	Scores	(PGS)	
	

In	this	problem,	you	will	create	a	polygenic	score	for	educational	attainment	to	be	used	in	

Add	Health,	alongside	publicly	available	summary	statistics	from	Lee	et	al.	(2018)	

(downloaded	to	here:	/home/data/LDSC_sumstats/GWAS_EA3_excl23andMe.txt).	In	order	

to	avoid	a	server	crash	(and	to	save	you	time),	we	will	construct	the	score	just	for	

chromosome	22.		

	

As	you	heard	in	lecture,	polygenic	scores	can	be	constructed	using	several	different	

methods	and	types	of	software.	We	will	be	using	the	software	PRS-CS	(Polygenic	Risk	

Scores	–	Continuous	Shrinkage),	a	recently	developed	method	that	provides	substantial	

computational	advantages	over	existing	methods.	PRScs	utilizes	a	high-dimensional	

Bayesian	regression	framework,	by	placing	a	continuous	shrinkage	prior	on	SNP	effect	

sizes,	which	is	robust	to	varying	genetic	architectures	and	enables	multivariate	modeling	of	

local	LD	patterns	(Ge,	et	al.	2019).	Other	prediction	methods	such	as	LDpred	and	Pruning	

and	Thresholding	(P&T)	will	not	be	covered	in	this	tutorial,	but	we	encourage	you	to	

explore	them	yourself	and	ask	us	any	questions	you	have	during	the	TAs’	office	hours!		

	

This	problem	will	challenge	you	to	apply	the	computational	skillset	you’ve	been	developing	

in	the	command	line,	in	R	and	in	software	developed	for	genetic	data	analysis.	We	are	

happy	to	answer	questions	if	you	get	stuck,	but	do	spend	time	Googling	or	browsing	

documentation	files	first.	This	is	the	way	these	skills	are	built!		

	

a.	 LD	reference	file:		

	 The	first	step	in	the	creation	of	a	polygenic	score	is	to	prepare	an	LD	reference	panel	

that	matches	the	ancestry	of	the	discovery	and	prediction	cohort.	We	will	use	the	pre-

computed	LD	reference	files	based	on	the	European	samples	in	the	1000	Genome	

Project,	downloaded		from	here:	https://github.com/getian107/PRScs.	To	avoid	



	

 16	

redundant	copies	of	identical	data	on	the	server,	you	can	use	the	files	here:	

/home/data/LD_reference/PRS_ref_panel/ldblk_1kg_eur/.	

	

b.				Format	discovery	statistics:		

Next,	you	will	need	to	format	the	GWAS	summary	statistics	into	the	required	input	

format	for	PRS-CS:	https://github.com/getian107/PRScs#using-prs-cs.	We	encourage	

you	to	do	this	step	yourself	using	R	or	Python	(both	software	packages	are	available	on	

the	server).		

	

c.	 Weights	generation:		

Now	that	we	have	all	the	necessary	input	to	build	the	polygenic	scores,	we	can	run	PRS-

CS	to	obtain	the	“weights”	for	each	SNP,	using:	(1)	the	reference	LD	panel;	(2)	the	

genotypic	data	of	the	Add	Health	samples;	(3)	the	formatted	GWAS	summary	statistics.		

	

We	have	downloaded	the	software	for	you:	/home/tools/PRScs/.	Try	to	write	your	own	

bash	script	or	command	line	codes,	in	reference	to:	

https://github.com/getian107/PRScs#prs-cs.		

	

Note	that	the	sample	size	of	the	summary	statistics	is	𝑁 = 766,345,	which	can	be	found	

in	our	README	file:	http://ssgac.org/documents/README_EA3.txt.			

	

e.			Scores	generation:		

Using	these	weights	and	the	genotypic	data	of	the	Add	Health	samples,	we	can	build	the	

polygenic	scores	using	PLINK.	Try	to	write	your	own	bash	script	or	command	line	

codes.	(Hint:	Look	up	the	option	“--score”	on	the	PLINK	index	page.	PLINK	requires	the	

SNP	weights	to	be	in	a	particular	format.	We	have	converted	the	file	into	the	proper	

format,	which	can	be	directly	used	as	input	to	the	flag	“--score”:	

/home/huili/PGS/phi_auto/EDUYR_AH_chr22_plinkformat.txt).		
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5. Evaluating	the	predictive	power	of	PGS		
	

	 Now	that	you	have	learnt	how	to	build	a	PGS	using	PRS-CS,	we	can	evaluate	the	

predictive	power	of	the	score,	using	the	Add	Health	sample.	We	have	prepared	the	

genome-wide	PGS	for	you,	and	the	script	can	be	found	here:	/home/TA_sample_scripts/	

5A.PRS_genome.sh.	(Please	do	not	run	this	script,	again	because	generating	this	is	

relatively	time-consuming	and	running	the	job	all	together	will	crash	the	server).	The	

genome-wide	PGS	of	a	subset	of	the	Add	Health	individuals	is	here:	

/home/data/PGS_prediction/EDUYR_AH_score.txt	

	

Take	this	score	and	merge	it	with	the	phenotypic	and	covariates	data	of	the	Add	Heatlh	

sample	(/home/data/AH_cleaned/ah_ea_sex_byear_pcs_euros.csv)	using	R	or	Python.	

Using	the	merged	dataset,	calculate	the	predictive	power	(incremental	𝑅$)	of	your	

score,	using	EduYears	as	the	dependent	variable.	Make	sure	you	control	for	the	

standard	covariates	(sex,	birth	year,	birth	year	squared,	sex	*	birth	year,	sex	*	birth	year	

squared,	and	the	first	10	PCs).	Write	up	a	short	description	of	your	results,	being	sure	to	

discuss	the	predictive	power	of	your	score.	(Bonus	points:	Use	bootstrap	to	build	the	

confidence	interval	for	the	incremental	𝑅$.	If	you	use	R,	try	the	“boot()”	function	in	the	

boot	library.)	
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